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Note 

On a Numerical Method for 
Quasi-conformal Grid Generation 

1. INTRoOUCTI~N 

In this note we generate some quasi-conformal grids by using fast Fourier trans- 
forms and path integrals. Thus this method is rapid as opposed to other elliptic 
methods. In particular we generate such grids around airfoils. The method uses 
potential flow equations of fluid flow in the construction of these grids. We briefly 
discuss about embedding this method within a general framework. The main pur- 
pose of this note is to discuss this specific but fast method and generate the grids 
which may have practical applications. This note is not meant to be an exhaustive 
treatment on quasi-conformal grid generation and thus we do not discuss their 
applications here. 

2. PRELIMINARIES ON COMPRESSIBLE FLOW 

Here we briefly discuss the compressible flow equations which are pertinent to 
our grid generation. The reader is referred to [ 1, 21 for details. 

Let Qz be the domain exterior to a closed body. In particular we will consider 
the closed body to be an airfoil. The potential flow equations of compressible fluid 
are given by [ I,2 J 

V.(m)=O; vxq=o; p = PY. (2.1) 

where the variables have their usual meaning. Introduce the potential and the 
stream functions 4 and I) respectively through 

pq=Vx C&k); q=V#. (2.2) 

Here c is an arbitrary constant. These equations in the potential plane w = ~+4 + i$ 
are then given by [l, 23 

e,-Ic’v,=O, e,+ Kv,=O. (2.3) 

Above and below 4, I+?, 8, v respectively denote potential, stream function, flow 
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direction and the Prandtl Meyer function. The functions K and v in (2.3) are 
defined as 

P K=c-. s 4 P 4 
P(dW) v= -. 1 4 (2.4), (2.5) 

We use the notation /I’ = 1 - M*. The density “p” is related to Mach number “M” 
and speed “q” through the Bernoulli’s law and the pressure-density relation for an 
ideal gas. The domain Q, maps into Sz,., where ,52,” is the exterior of a slit, the slit 
aw being the image of the body 8~. The mapping z(w): 52, -+ 52, is given by 

dz=T(dd+iEd$) 

=${(l+;)dwf(l-;)dti}. (2.6) 

Notice that this mapping is not conformal. If the following variables are introduced 

T= --v+ie; 
1-K 

‘=l+KK’ (2.7), (2.8) 

then the equations (2.3) can be written in compact form as [2] 

Tw=p,. (2.9) 

Equations (2.6) and (2.9) together define the flow in the z-plane. Now introduce 
a conformal mapping w, = 0, mapping the w-plane into the interior of a unit circle 
(~1 < 1 so that (2.9) and (2.6) respectively reduce to 

and 

where 
- 

P(%) x= 00 . 

From mapping (2.11) we have 

(2.11) 

(2.12) 

(2.13), (2.14) 
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For the purpose of exposition, it is preferable to write Eqs. (2.13) and (2.14) as 

Zd = f(z(fJ), 0); z, = g(z(o), 01, (2.15), (2.16) 

where the functions f and g are easily identified from (2.13) and (2.14). Notice that 
both are explicit functions of r (also Y) and 0. 

We note that the function 1 in Eq. (2.10) depends on K through (2.12) and (2.8). 
One notices from (2.4) that K depends on the choice of the pressure-density 
relation and the constant “c.” Now if the p - p relation in Eq. (2.1) is modified to 
be (p- l)=y(l - l/p), then it can be shown that [3,5] 

P=BiBc4. 

The constant “c” is chosen to be l//I,, so that Eq. (2.17) reduces to 

(2.17) 

PlC = P (2.18) 

In this approximation, the constant K, given by Eq. (2.4) equals one. It is seen 
from (2.8) and (2.12) that with K= 1, x=0 and Eq. (2.10) reduces to 

Te = 0. (2.19) 

This approximation is known as tangent gas approximation. In this approxima- 
tion, computation of r is somewhat straightforward. The theory developed here will 
be useful in the following section. 

3. GRID GENERATION 

We consider the problem of grid generation as mapping of the interior of a unit 
circle in a-plane onto the exterior of a closed body in the z-plane such that the unit 
circle maps onto the body. A quasi-conformal mapping can be generated by solving 

Zd = h(o), (3.1) 

where h(o) is an arbitrary function. It is known that if h(a) is Holder continuous, 
then z,(a) and Z(C) are given by [6] 

(3.2) 

(3.3) 

Integration over the entire domain can be performed.using (3.2) to generate the 
grids. However, by using this method, determining the image of each lattice point 
of the circle plane requires the evaluation of one double integral. This is a rather 
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tedious and numerically expensive task. In order to make this method numerically 
viable, consider pinning the arbitrary function h(a) in (3.1) to be f(r(a), 0) given 
by (2.13)-(2.16), i.e., 

Zd = f($a), a); 

then (3.2) and (3.3) become (see Eqs. (2.15) and (2.16)) 

(3.4) 

z, = g($a), g), z(a) = j s($a), a) da + j- .f(~(c~), a) dc, (3.5), (3.6) 

subject to the constraint that r satisfies 

T# = XT,. (3.7) 

In fictitious gas (tangent gas) approximation this constraint reduces to 

5, = 0. (3.8) 
It is obvious that generating the grids by using the path-integral (3.6) will require 

a considerably smaller number of operations than by using the double integral 
formulation (3.2). This is, however, true only if evaluation of r does not involve a 
considerable number of operations. Undoubtably this requires the computation of 
r by using Eq. (3.8), rather than Eq. (3.7). Thus our specific fast algorithm consists 
of the following steps: 

(i) Compute the function r(a) using the fast Fourier transforms. For details 
on this see [3]. Briefly, this stage consists of expressing r as a Taylor series and 
then evaluating z on the unit circle cr = 1 at a specified free stream Mach number 
and angle of attack. Use of FFT is made in this computation. This computation 
requires N log N operations with N grid points on the unit circle. Once r (r~ = 1) 
is known, r at the interior grid points are evaluated using the Taylor series. 
Considerable computational savings are favored when use is made of FFT in this 
evaluation [2]. With N number of grid points also in the radial direction, the total 
number of operations is N2 log N. These operations provide the value of r at all 
(N2) interior points. 

(ii) Evaluate the functions f(r(c), a) and g(r(o), cr.) by using the explicit 
relations (2.13k(2.16). 

(iii) Generate the grids by evaluating the path integrals using (3.6). 

We point out that the hidden parameters that can be tuned to generate different 
types of grids are Mach number “M,” and angle of attack 8, = “~1.” This fact has 
been mentioned in step (i) above. For our purpose of grid generation here, M, and 
a should be thought of as flexible parameters. 

We end this section by analysing the ratio IA(a)l = Iz,/z,I which plays an impor- 
tant role in the mappingf(a): Sz, + 52,. From (2.13) and (2.14) we have 

(3.9) 
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For our approximation (2.18), (3.9) reduces to 

The Jacobian of this quasi-conformal mapping [S] is given by 

J= Iz,12- Iz,12= (1 - ]!?I’) ]z,12. 

(3.10) 

Note from (3.10) and (3.11) that for M=O, we have A=0 and J= jz,12. This 
corresponds to conformal mapping. However, we should notice that M= 1 
corresponds to I;11 = 1 which implies J= 0 and hence the entire 52 maps into a line 
y = g(x). This line depends on the form of z(a). These remarks will be useful in 
discussing the numerical results in the next section. 

4. NUMERICAL RESULTS AND DISCUSSIONS 

We apply our algorithm to generate quasi-conformal grids around NACAO012 
airfoil. We have taken uniformly spaced grid points in the radial and angular direc- 
tions in the circle plane. In all our runs, the number of grid points in angular and 
radial directions have been taken to be 129 and 21, respectively. Thus we have a 
fixed set of grid points in the circle plane. We fix GI = 0 in order to generate 
symmetric grids around the airfoil. This leaves the “M,” as a free parameter. On 
mapping the grids of the circle plane onto the exterior of the airfoil, we generate the 
grids that one is usually interested in. The properties of these grids will vary as the 
M, is changed. We show these grids for various values of M,. 

In Figs. 1, 2, 3, and 4 we show the grids generated for M, =O, M, =0.5, 
M, = 0.6, and M, = 0.8, respectively. By visual inspection of these figures, we note 
that the grids are orthogonal in Fig. 1, which corresponds to conformal mapping 
(M = 0, A= 0, see Eq. (3.10)). For M # 0, we see in Figs. 2, 3, and 4 that the grids 
are not orthogonal. We especially notice the following which is consistent with the 
theory: 

(i) The deviation from orthogonality increases as the parameter “M,” 
increases. This can be noticed by comparing any particular cell in these figures. 
Consider visually comparing the cells marked “I” in these figures which are images 
of the same grid cell of the circle plane. 

(ii) With parameter “M” increasing, the length (h) of one side of each grid 
cell keeps increasing, while the other side (w) keeps decreasing. If we refer to this 
ratio h/w as cell aspect ratio and denote it by “A,” then wi! have dA/dM > 0 for each 
grid cell. It is expected that as “M,” approaches one “w” approaches zero; thereby 
all grid cells collapse onto a line. This is in agreement with the fact that the 
Jacobian J = 0 for M = 1. However, M = 1 is a case of parabolic degeneracy (see 
Eq. (2.3)) and there are technical problems in this singular limit. In any case for the 
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purpose of grid generation, such degenerate situations are pathological and are of 
no use. 

So, here we have a method which allows one to generate grids whose properties 
can be changed by varying the parameter M,. These grids may be useful in 
problems where the held variable changes more rapidly in one direction than the 
other direction. Such grids have been previously used by the author in solving Euler 
equations using finite volume method using flow 52s code [3]. Similarly we can 
generate grids by varying the other free parameter a. However such grids for a f 0 
will be severely curved and unsymmetric and seem to be of not much interest. 

The above two free parameters enter into our formulation through auxillary 
equations whose unique solution requires the specification of these parameters. 
Here we have used the compressible fluid flow equations as auxillary equations. 
Here application is somewhat limited due to lack of more adjustable parameters. 
The possibility of the existence of other sets of auxillary equations which will serve 
the purpose equally well or even better is not ruled out. It must be emphasized that 
a more general method would be to use Eq. (3.2) to generate the grids. This will 
allow one to incorporate as many parameters as one wishes in the choice of the 
function h(a) in (3.2). Thus a wide variety of two-dimensional quasi-conformal 
grids can be generated by adjusting these parameters. But this is at present 
numerically expensive due to the area integral in Eq. (3.2). Only a fast method for 
evaluating this double integral will make this method numerically favorable, beside 
being very general in application. Some work along this direction is reported in [4] 
and more exhaustive treatment on this issue will be reported elsewhere. 
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